Journal of Organometallic Chemistry, 388 (1990) 75-87 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20636

Koordinationsverhältnisse in Cyclopentadienylverbindungen

III *. Die Kristallstruktur von $[Yb(C_5H_4CH_3)_2NH_2]_2$

A. Hammel und J. Weidlein *

Institut für Anorganische Chemie der Universität Stuttgart, Pfaffenwaldring 55, D-7000 Stuttgart 80, (B.R.D.)

(Eingegangen den 4. Dezember 1989)

Abstract

The reaction of methylcyclopentadiene with ytterbium in liquid ammonia yields $bis(\eta^5$ -methylcyclopentadienyl)ytterbiumamide, [Yb(mecp)₂NH₂]₂ as a byproduct.

[Yb(mecp)₂NH₂]₂ crystallizes in the orthorhombic space group *Pbca* with *a* 998.4(2), *b* 1876.7(3), *c* 1193.1(2) pm; ρ_{calc} 2.064 g/cm³ for Z = 4. Every ytterbium atom is pseudo-tetrahedrally coordinated by the centres Z of two methylcyclopentadienyl rings and two bridging N-atoms. The angle between the plane containing the Yb-atoms and the ring centres and the Yb₂N₂ ring plane is approximately 90°.

X-ray crystallography of the compounds formulated as Mcp₂X have revealed the existence of monomers, dimers, trimers, tetramers and linear polymers. Our model of the "Cyclopentadienylkugel" can be used to reliably predict whether a compound will be monomeric or associated $(n \ge 2)$. Likewise, if n = 2, the model successfully predicts whether the dimer is of the type $cp_2M(\mu-X)_2Mcp_2$ (type A) or $cp_2M(\mu-X)$ -MXcp₂ (type B). In the lanthanide and actinide series (M = Ln, Ac) it is possible to predict the important structural features of these compounds.

Zusammenfassung

Bis(η^5 -methylcyclopentadienyl)ytterbiumamid, [Yb(mecp)₂NH₂]₂, entsteht als Nebenprodukt bei der Reaktion von Methylcyclopentadien und metallischem Ytterbium in flüssigem Ammoniak.

 $[Yb(mecp)_2NH_2]_2$ kristallisiert in der orthorhombischen Raumgruppe *Pbca* mit a 998.4(2), b 1876.7(3), c 1193.1(2) pm; ρ_{ront} 2.064 g/cm³ für Z = 4. Jedes Ytterbiumatom ist verzerrt tetraedrisch von den Zentren Z zweier Methylcyclo-

^{*} II. Mitteilung siehe Ref. 1.

pentadienylringe und zwei verbrückenden Stickstoffatomen umgeben. Die Ebene durch die beiden Yb-Atome (Yb, Yb') sowie die Zentren Z(1), Z(2), Z(1') und Z(2') und die Ebene des Yb₂N₂-Vierrings schliessen einen Winkel von nahezu 90° ein.

Kristallstrukturuntersuchungen an Verbindungen der Stöchiometrie Mcp₂X haben die Existenz von monomeren, dimeren, trimeren, tetrameren und linearpolymeren Strukturtypen aufgezeigt. Unser Modell der "Cyclopentadienylkugel" liefert zuverlässige Vorhersagen bezüglich des Auftretens monomerer oder höher assozierter ($n \ge 2$) Strukturtypen. Für n = 2 kann auf der Grundlage des Modells sicher zwischen den beiden möglichen Strukturtypen cp₂M(μ -X)₂Mcp₂ (Typ A) und cp₂M(μ -X)MXcp₂ (Typ B) unterschieden werden. Im Bereich der Lanthaniden- und Actinidenmetalle (M = Ln, Ac) können ausserdem die wichtigsten Strukturparameter dieser Verbindungen vorhergesagt werden.

Einleitung

Im Rahmen unserer Arbeiten zur Struktur von Cyclopentadienylverbindungen berichteten wir kürzlich über die Röntgenstrukturanalyse von Bis(methylcyclopentadienyl)-1,2-dimethoxyethancalcium. Spektroskopische Untersuchungen und der Vergleich mit der Kristallstruktur von Dicyclopentadienyl-1,2-dimethoxyethanytterbium zeigten die enge Verwandtschaft metallorganischer Ca- und Yb^{II}-Verbindungen auf [1]. Die Darstellung erfolgte durch Umsetzung der blauen Lösung der Metalle in flüssigem Ammoniak mit Methylcyclopentadien. Mittels fraktionierter Kristallisation aus 1,2-Dimethoxyethan (DME) konnte im Falle des Ytterbiums aus dem Rohprodukt das schwerer lösliche [Yb(mecp)₂NH₂]₂ in Form gelbgrüner, rhomboedrischer Kristalle isoliert werden.

Untersuchungen der Umsetzung von Cyclopentadien mit Ytterbium und Europium in flüssigem Ammoniak wurden erstmals von E.O. Fischer und H. Fischer [2] durchgeführt. Die Hochvakuumsublimation des Rohproduktes lieferte neben Ybcp₂ die Nebenprodukte Ybcp₃ und Ybcp₂NH₂. Später schlugen Müller [3] und Hayes [4] unabhängig voneinander aufgrund massenspektroskopischer Untersuchungen für Ybcp₂NH₂ eine dimere Struktur vor.

Im folgenden berichten wir über die Struktur von $[Yb(mecp)_2NH_2]_2$. Auf der Basis unseres Modells der "Cyclopentadienylkugel" werden die wichtigsten Strukturparameter und Randbedingungen für das Auftreten verschiedener Strukturtypen der Stöchiometrie $[Mcp_2X]_n$, mit $n = 1, 2, 3, 4, \infty$ vorgestellt.

Röntgenstrukturanalyse

Die durch fraktionierte Kristallisation aus DME bei 0°C erhaltenen, gelbgrünen Kristalle sind unter trockenem, entgasten Nujol separiert und in Lindemannkapillaren eingeschmolzen worden.

Die röntgenographischen Messungen erfolgten an einem rechnergesteuerten Vierkreisdiffraktometer, Syntex P2₁, mit Mo- K_{α} -Stahlung (Graphitmonochromator) bei ca. -100 °C. Die Gitterkonstanten sowie alle wichtigen Angaben zur Messung und zur Strukturlösung sind in Tabelle 1 zusammengestellt.

Die systematischen Auslöschungen der Messung (0kl: l = 2n + 1, h0l: h = 2n + 1)und hk0: k = 2n + 1) führten zu der orthorhombischen Raumgruppe *Pcab*. (Nicht-Standardaufstellung von *Pbca*, Nr. 61 [5]).

Tabelle 1

Angaben zur Messung und Lösung der Kristallstruktur von [Yb(mecp)2NH2]2

Kristallsystem	orthorhombisch
Raumgruppe	<i>Pbca</i> $(D_{2h}^{15}, Nr. 61 [5])$
systematische Auslöschungen	0kl: k = 2n + 1, h0l: l = 2n + 1,
	hk0: h = 2n + 1
Gitterkonstanten (pm)	a 998.4(2), b 1876.7 (3),
	c 1193.1(2)
Reflexe f. Gitterkonst.	$18 (25 < 2\theta < 30^{\circ})$
Zellvolumen ($pm^3 \times 10^6$)	2235.4 (7)
Ζ	4
$\rho_{\rm rönt}$ (g cm ⁻³)	2.064
MG (g/mol)	694.6
f (0, 0, 0)	1320
$\mu(\text{Mo-}K_a)(\text{cm}^{-1})$	83.1
Messbereich	$0 < 2\theta < 55^{\circ}$
hkl (min, max)	0 0 0, 12 24 15
Zahl der gem. unabhäng. Refl.	$N_{m} = 2567$
Zahl der beobachteten Refl. ^a	$N_0 = 2085$
Zahl der Parameter	127
max. shift/standard im	
letzten Verfeinerungszyklus	0.00095
$R_1 = \sum (F_0 - F_c) / \sum F_0 $	0.055
$R_{2} = \left[\sum w(F_{o} - F_{c})^{2} / \sum w F_{o} ^{2} \right]^{1/2}$	0.063

^a Reflexe mit $I < 2\sigma(I)$ wurden als nicht beobachtet gewertet. In dieser und in allen folgenden Tabellen ist die Standardabweichung in Einheiten der letzten Stelle in Klammern angegeben.

Durch Umindizierung konnte die Standardaufstellung *Pbca* erreicht werden. Statistische E-Wert-Tests belegen das Vorliegen einer zentrischen Raumgruppe.

Die Bestimmung der Ortskoordinaten der Yb-Atome erfolgte mit Hilfe einer Patterson-Synthese. Anschliessende Fourier- und Differenzfouriersynthesen lieferten die Lagen aller übrigen Nicht-Wasserstoffatome. Die Lagen der Wasserstoffatome wurden berechnet (Ring-CH: 95; CH_{CH3}: 105; NH: 100 pm) und konnten grösstenteils mittels einer Differenzfouriersynthese bestätigt werden; sie blieben von der Verfeinerung ausgeschlossen. Bei den Strukturfaktorberechnungen erhielten sie den isotropen Temperaturfaktor U = 633. Die Verfeinerung der Atomlagen aller Nicht-Wasserstoffatome nach der Methode der kleinsten Fehlerquadrate konvergierte mit isotropen Temperaturfaktoren bei einem *R*-Wert von 0.064, mit anisotropen Temperaturfaktoren bei 0.055 ($R = \Sigma(||F_0| - |F_c||)/\Sigma|F_0|$).

Atomparameter, Bindungslängen und -winkel sind in den Tabellen 2 und 3 zusammengestellt. Die Bezeichnung der Atome entspricht derjenigen in Fig. 1.

Jedes Ytterbiumatom ist verzerrt tetraedrisch von den Zentren zweier Methylcyclopentadienylringe und zwei verbrückenden Stickstoffatomen umgeben. Die Yb₂N₂-Vierringebene schliesst mit der Ebene des Methylcyclopentadienylrings einen Winkel von 24.1 bzw. 24.4° ein. Die Methylcyclopentadienylringe sind nahezu planar (Ring 1: $\Delta_{max} = 1.1$; Ring 2: $\Delta_{max} = 0.7$ pm), die Methylgruppen an C(1) bzw. C(7) sind 1.9 bzw. 1.1 pm aus der Ebene heraus, vom Ytterbium weggebogen. Der Winkel zwischen den beiden Ringebenen beträgt 50.5°.

Die Zentren (Z(1), Z(2), Z(1'), Z(2')), der Mittelpunkt des Yb_2N_2 -Vierrings (Inversionszentrum) und die Yb-Atome (Yb, Yb') liegen ebenfalls nahezu in einer

Tabelle 2

Atom	x	y	Z	U
Yb	544(<1)	853(< 1)	423(<1)	164(2)
N	995(10)	19(5)	- 922(8)	173(22)
C(1)	3102(11)	895(7)	972(11)	321(35)
C(2)	2594(14)	251(7)	1434(12)	274(32)
C(3)	1657(15)	456(8)	2282(10)	238(29)
C(4)	1607(17)	1190(9)	2341(12)	319(34)
C(5)	2540(15)	1477(8)	1528(12)	347(36)
C(6)	4152(14)	929(7)	59(15)	284(32)
C(7)	219(12)	1802(7)	-1205(12)	354(38)
C(8)	-981(14)	1420(8)	-1168(13)	373(38)
C(9)	-1619(14)	1553(7)	122(13)	302(34)
C(10)	- 815(15)	2030(9)	502(13)	359(38)
C(11)	352(15)	2172(7)	-192(13)	423(42)
C(12)	1191(18)	1816(9)	-2139(13)	374(38)

Ortskoordinaten (×10⁴) und isotrope Temperaturfaktoren der Nicht-Wasserstoffatome (der Parameter U des isotropen Temperaturfaktors exp $(-8\pi^2 U \sin^2\theta/\lambda^2)$ ist in Einheiten von pm² angegeben)

Tabelle 3

Bindungslängen (pm) und -winkel (Grad) für [Yb(mecp)₂NH₂]₂ ^a

Abstände		C(9)-C(10)	141(2)	
YbN	229(1)	C(10)-C(11)	145(2)	
Yb-N'	232(1)	C(11)-C(7)	140(2)	
Yb-Yb'	353(1)	C(7) - C(12)	148(2)	
N-N'	297(1)			
Yb-C(1)	264(1)	Winkel		
YbC(2)	263(1)	Z(1)-Yb-Z(2)	130.5	
Yb-C(3)	259(1)	Z(1)-Yb-N	108.4	
Yb-C(4)	260(1)	Z(2)-Yb-N'	107.7	
Yb-C(5)	266(1)	Yb-N-Yb'	99.9(4)	
Yb-C(7)	266(1)	N-Yb-N´	80.1(3)	
Yb-C(8)	266(1)	C(5)-C(1)-C(2)	109.8(12)	
Yb-C(9)	261(1)	C(1)-C(2)-C(3)	106.2(11)	
Yb-C(10)	259(1)	C(2)-C(3)-C(4)	109.2(13)	
Yb-C(11)	259(1)	C(3)-C(4)-C(5)	108.3(13)	
Yb-Z(1)	233	C(4)-C(5)-C(1)	106.6(13)	
Yb-Z(2)	233	C(11)-C(7)-C(8)	108.0(13)	
C(1)-C(2)	142(2)	C(7)-C(8)-C(9)	108.7(13)	
C(2)-C(3)	143(2)	C(8)-C(9)-C(10)	108.6(12)	
C(3)-C(4)	138(2)	C(9)-C(10)-C(11)	105.7(13)	
C(4)-C(5)	145(2)	C(10)-C(11)-C(7)	109.0(12)	
C(5)-C(1)	140(2)	C(6)-C(1)-C(2)	124.2(12)	
C(1)-C(6)	151(2)	C(6)-C(1)-C(5)	126.0(12)	
C(7)-C(8)	140(2)	C(12)-C(7)-C(8)	126.6(14)	
C(8)-C(9)	142(2)	C(12)-C(7)-C(11)	125.5(13)	

 \overline{a} Z(1), Z(2) sind die Zentren der Methylcyclopentadienylringe; symmetrieäquivalente Atome sind durch ' gekennzeichnet.

Fig. 1. Molekülstruktur von [(mecp)₂YbNH₂]₂ [6].

Ebene (die Yb-Atome sind von dieser Ebene ± 1.7 , die Zentren Z(1) und Z(2) bzw. Z(1') und Z(2') ± 0.5 pm entfernt). Sie steht mit 89.0 bzw. 89.9° nahezu senkrecht zur Ebene der Methylcyclopentadienylringe bzw. der Yb₂N₂-Vierringebene.

Die $[Yb(mecp)_2NH_2]_2$ -Einheiten ordnen sich im Kristall so um die kristallographischen Inversionszentren an, dass der Mittelpunkt des planaren Yb₂N₂-Vierringes mit diesen identisch ist (Fig. 2).

Das im folgenden ausführlich beschriebene Modell der "Cyclopentadienylkugel" sagt für $[Yb(mecp)_2NH_2]_2$ den im Experiment bestätigten und im folgenden mit A bezeichneten Strukturtyp vorher. Die auf der Grundlage des Modells erwarteten

Fig. 2. Stereoskopische Darstellung der Elementarzelle von [(mecp)₂YbNH₂]₂ [6].

	I		II [7]		
	ber.	gef.	ber.	gef.	
Strukturtyp	Α	A	A	A	
Koordinationszahl	8	8	8	8	
r(Ln) KZ = 8 (pm)	99	99	102	102	
$\phi(Ln-C)$ " (pm)	259 ± 4	262(1)	262 ± 4	264(1)	
$\phi(Ln-N)^{a}(pm)$	232	231(1)	b	235(1)	
$Z-Ln-Z'(\circ)$	131 ± 4	130.5	131 ± 4	129.7	
N-Ln-N'(°)	80	80.1	80	79.3	
Ln-N-Ln'(°)	100	99.9	100	100.7	

Die Strukturparameter von $[Yb(C_5H_4CH_3)_2NH_2]_2$ (I) und $[(C_5H_5)Y[N=C(H)C(CH_3)_3]]_2$ (II)

 ${}^{a}\phi(Ln-C)$ stellt den Mittelwert aller Ln-C(η^{5})-Abstände; $\phi(Ln-N)$ den Mittelwert der vier Ln-N-Abstände dar. Die Ionenradien in Abhängigkeit von der Koordinationszahl werden von Shannon [8] übernommen. b II stellt die einzige bisher strukturell charakterisierte Verbindung mit verbrückenden Ln-N-Bindungen dar. Der Abstand Y-N wird zur Bestimmung des Parameters für die Grösse des Stickstoffs verwendet.

Bindungslängen sind in Tabelle 4 den experimentellen Daten und jenen der bisher einzigen schon bekannten, N-verbrückten Lanthanidenverbindung gegenübergestellt.

Die Cyclopentadienylkugel

Vor kurzem [1] berichteten wir über die Struktur von $Bis(\eta^5$ -methylcyclopentadienyl)-1,2-dimethoxyethancalcium und stellten in diesem Zusammenhang die wichtigsten Aussagen des Modells der "Cyclopentadienylkugel" und deren Anwendung im Bereich der Strukturtypen Mcp₃X, Mcp₃L, Mcp₂L₂, Mcp₂X und Mcp₂L (X = anionischer Ligand; L = Donorligand) vor.

Unser Modell beschäftigt sich hauptsächlich mit der Vorhersage von Strukturparametern im Bereich der "ionischen" Cyclopentadienylverbindungen, macht darüberhinaus jedoch auch Aussagen für die "kovalenten" η^1 - und η^5 -Typen [9]. Im Bereich der Übergangsmetalle können die Aussagen zur Bestimmung des Strukturtyps mit gutem Erfolg angewendet werden. Bei Bindungslängen und -winkeln treten jedoch Abweichungen auf. Untersuchungen zur Erfassung dieser Effekte und zur Ausdehnung des Anwendungsbereichs des Modells auch auf die Übergangsmetalle stehen noch aus.

Das Modell liefert den durchschnittlichen Metall-Kohlenstoff-Abstand sowie die Randbedingungen für das Auftreten der Strukturtypen bei Mcp_n (n = 2, 3, 4). Ausgehend von diesen Mcp_n-Fragmenten können für die verschiedenen Klassen, z.B. Mcp₃X (unter Einbeziehung weiterer Parameter) die Strukturaussagen verfeinert und Aussagen über sämtliche Bindungslängen und -winkel gemacht werden. Zur Entwicklung dieser Parameter werden in jeder Klasse Strukturdaten bekannter Vergleichsverbindungen herangezogen.

Im Bereich der Lanthanidenverbindungen besitzt die weitaus grösste Zahl der strukturell charakterisierten Verbindungen die Summenformel $[Mcp_2X]_n$ $(n = 1, 2, 3, 4, \infty)$. Die Strukturparameter der Vertreter dieser Klasse lassen sich daher nahezu vollständig und mit hoher Genauigkeit vorherbestimmen. Die Verbindungen des Typs $[Mcp_2X]_n$ streben im Bereich der Lanthaniden Strukturen mit der

Tabelle 4

Koordinationszahl 8 an. Die Ausbildung dimerer (n = 2) oder höher assoziierter Strukturtypen (n > 3) ist daher stark begünstigt und nur bei bestimmten, sterisch angespannten Systemen unmöglich. Für n = 1 und n = 3 tritt jeweils nur ein Strukturtyp auf, für n = 2 sind die zwei Typen zu unterscheiden, die wir mit A und B bezeichnen.

$[Mcp_{2}X]_{n}; n = 1$

Bei sehr kleinen Metallionen $(r_{M^{3+}} \leq 75 \text{ pm}$ bei KZ = 7 [8] z.B. V³⁺) ist auch in Verbindungen mit unsubstituierten Cyclopentadienylringen eine Dimerisierung aufgrund der sterischen Anspannung nicht mehr möglich (z.B. Vcp₂Cl). Grössere Metallionen nehmen die günstigere Koordinationszahl 8 an und bilden assoziierte Strukturtypen aus. Bei Metallen mit $r_{M^{3+}} < 85$ pm bei KZ = 7 lässt sich der monomere Strukturtyp durch Verwendung hochsubstituierter Cyclopentadienylringe (z.B. cp^{*} = C₅(CH₃)₅) erhalten. Der monomere Strukturtyp lässt sich darüberhinaus auch bei grösseren Metallionen ($r_{M^{3+}} > 85$ pm) durch geeignete Wahl von X erzwingen. So kommt es z.B. bei Verwendung der grossen Reste N(Sime₃)₂ bzw. CH(Sime₃)₂ aufgrund der sterischen Anspannung in den assoziierten Strukturtypen mit μ -X-Brücken zur Ausbildung des monomeren Typs Mcp₂X.

$[Mcp_2 X]_n; n = 2, 3, 4, \infty$

Während sich der Existenzbereich von n = 1 sicher abgrenzen lässt, ist auf der Basis dieser Modellbetrachtung eine Unterscheidung zwischen n = 2, 3, 4 und ∞ nicht möglich. Vielmehr scheinen die höher assoziierten Typen (n = 3, 4 und ∞) in einigen Fällen strukturelle Alternativen, bei gleichen sterischen Anforderungen darzustellen. So konnte für Gdcp₂Br sowohl der dimere Typ (n = 2) als auch der polymere Strukturtyp ($n = \infty$) [10] nachgewiesen werden. Für n = 2 lassen sich die zwei Strukturtypen A und B beschreiben und gegeneinander abgrenzen (Fig. 3).

Im Typ A besitzen beide Metallionen die Koordinationszahl 8. Die Ebene des planaren M_2X_2 -Vierringes schliesst mit der durch die beiden Metallionen (M, M') und die vier Zentren der Cyclopentadienylringe (Z(1), Z(2), Z(1'), Z(2')) gebildeten Ebene einen Winkel von 90° ein. Dieser Strukturtyp tritt bei allen Metallionen mit $r_{M^{3+}}$ > 75 pm auf, wenn nicht durch hochsubstituierte Cyclopentadienylringe (z.B. cp^{*}) der Type B ($r_{M^{3+}}$ > 85 pm) erzwungen wird. Die sterischen Anforderungen von vier cp^{*}-Ringen bewirken eine hohe Anspannung des [Mcp₂X]₂-Systems. Diese wird im Typ B dadurch vermindert, dass die beiden Metallionen (M, M') und die

Fig. 3. Die beiden Strukturtypen A (z.B. $[Sccp_2Cl_2]_2$ [18]) und B (z.B. $[(cp^*)_2Lu(CH_3)(\mu-CH_3)Lu(cp^*)_2]$ [12]) für n = 2.

Zentren der Ringe (Z(1), Z(2), Z(1'), Z(2')) nicht wie in Typ A in einer Ebene angeordnet sind, sondern in zwei Ebenen, die einen Winkel zwischen 60 und 90° einschliessen. Diese Anordnung der cp*-Ringe führt zur Ausbildung einer Struktur mit einer nahezu linearen MXM'-Brücke und einer terminalen M'X-Bindung. Die MX-Abstände in der Brücke sind stark unterschiedlich, wobei der MX-Abstand deutlich kürzer ist als der M'X-Abstand. Im Typ B besitzt das Metallion M nur die KZ = 7, während M' die bevorzugt angestrebte Koordinationszahl 8 erreicht (siehe Fig. 3).

Nach der Abgrenzung der Existenzbereiche der verschiedenen Strukturtypen bieten sich folgende Möglichkeiten zur Abschätzung der wichtigsten Strukturparameter:

Die Bindungslängen ergeben sich aus der Summe des Metallionenradius (in Abhängigkeit von der Koordinationszahl 'KZ' von Shannon [8] tabelliert) und dem "effektiven Radius" des Bindungspartners. Für den Kohlenstoff im Cyclopentadienylring ist dabei ein Wert von 160 ± 4 pm als typisch anzusehen.

Die Untersuchung bekannter $Lncp_2X$ -Verbindungen lieferte auch für die Liganden X verschiedener Strukturtypen einheitliche "effektive Radien". Der Winkel zwischen den beiden MZ-Verbindungslinien im Mcp₂-Fragment wird hauptsächlich durch die Koordinationszahl des Metallions bestimmt. Metallionen mit KZ = 7, wie sie für n = 1 und im Typ **B** (n = 2) auftreten, weisen einen ZMZ-Winkel von $142 \pm 3^{\circ}$ auf. Alle anderen Metallionen besitzen KZ = 8 und bilden einen ZMZ-Winkel von $131 \pm 4^{\circ}$ aus. Geringe Abweichungen können aufgrund unterschiedlicher Metallionenradien und/oder Substituenten am cp-Ring auftreten; sie lassen sich leicht abschätzen. In Tabelle 5 sind die erwarteten Strukturparameter noch einmal zusammengestellt.

Die Bindungswinkel der Verbindung und die MC-Abstände im Mcp₂-Fragment lassen sich mit der angegebenen Unsicherheit vorhersagen. Für eine Prognose der von X abhängigen Bindungslängen und -winkel benötigt man in jeder Klasse Vergleichsstrukturen. Durch Subtraktion des Metallionenradius erhält man aus dem MX-Abstand die "effektiven Radien" der unterschiedlichen Liganden X. Diese können zur Abschätzung des MX-Abstandes in analogen Verbindungen genutzt werden. Die Sicherheit der Vorhersage steigt dabei mit der Zahl der bekannten Vergleichsstrukturen. Da für n = 1, 3, 4 und ∞ sowie den Typ **B** bisher nur wenige Beispiele bekannt sind, können in diesen Klassen die MX-Abstände nur mit

		21	•	12 30	
KZ	r _c	ZMZ	XMX'	MXM'	
7	160 ± 4	142 ± 3			_
8	160 ± 4	131 ± 4	-	-	
8	160 ± 4	131 ± 4	75–95 ^a	105-85 ^a	
7	160 ± 4	142 ± 3	_	165 ± 5 ^b	
8	160 ± 4	131 ± 4			
8	160 ± 4	131 ± 4	~ 85 ^b	~155 ^b	
8/9	160 ± 4	131 ± 4	_		
	KZ 7 8 8 7 8 8 8 8 8 8 8	KZ r_c 7 160±4 8 160±4 8 160±4 7 160±4 8 160±4 8 160±4 8 160±4 8 160±4 8 160±4 8 160±4 8 160±4 8 160±4 8 160±4 8/9 160±4	KZ r_c ZMZ 7 160 ± 4 142 ± 3 8 160 ± 4 131 ± 4 8 160 ± 4 131 ± 4 7 160 ± 4 131 ± 4 7 160 ± 4 131 ± 4 7 160 ± 4 131 ± 4 8 160 ± 4 131 ± 4 8 160 ± 4 131 ± 4 8 160 ± 4 131 ± 4 8/9 160 ± 4 131 ± 4	KZ r_c ZMZ XMX' 7 160 ± 4 142 ± 3 - 8 160 ± 4 131 ± 4 - 8 160 ± 4 131 ± 4 75-95 " 7 160 ± 4 142 ± 3 - 8 160 ± 4 131 ± 4 75-95 " 7 160 ± 4 131 ± 4 - 8 160 ± 4 131 ± 4 - 8 160 ± 4 131 ± 4 - 8 160 ± 4 131 ± 4 - 8/9 160 ± 4 131 ± 4 -	KZ r_c ZMZ XMX' MXM' 7 160 ± 4 142 ± 3 - - - 8 160 ± 4 131 ± 4 - - - 8 160 ± 4 131 ± 4 75-95 a 105-85 a 7 160 ± 4 142 ± 3 - 165 ± 5 b 8 160 ± 4 131 ± 4 - 165 ± 5 b 8 160 ± 4 131 ± 4 - 155 b 8 160 ± 4 131 ± 4 - - 8/9 160 ± 4 131 ± 4 - -

Charakteristische Parameter für die verschiedenen Strukturtypen im Bereich $[Mcp_2X]_n$

^a Der XMX'- und MXM'-Winkel stellt für jedes X einen charakteristischen Wert dar, siehe auch Tabelle 6. ^b Für den Typ **B** sowie $[Mcp_2X]_3$ und $[Mcp_2X]_n$ wurden bisher nur wenige Beispiele beschrieben; die angegebenen Werte können daher nur Anhaltspunkte sein.

Tabelle 5

Tabelle 6

[Mcp₂X]-Verbindungen des Typs A im Bereich der Lanthaniden und Actiniden"

Verbindung	r _M (pm)	φ(MC) (pm)	r _C	Z-M-Z	X-M-X'	M-X-M'	Lit.
<u> </u>							
$[(mecp)_2YOCHCH_2]_2$	102	265	163	128	73	107	13
X = N							
$[(cp)_2 YNC(H)C(CH_3)_3]_2$	102	264	162	130	79	101	7
$[(mecp)_2YbNH_2]_2$ (erw.)	99	259 ± 4	160 ± 4	131 ± 4	80	100	
(gef.)	99	262	163	131	80	100	с
X = C							
$[(cp)_{Yb}CH_{3}]_{2}$	99	262	163	128	93	87	14
$[(cp)_{2}YCH_{1}]_{2}$	102	266	164	129	92	88	14
$[(mecp)_2YbCH_3]_2$	102	265	163	-	93	87	15
$[(cp)_2Er(C=C-R)]_2$	100	262	162	130	83 ^{<i>b</i>}	97 ^b	16
$[(mecp)_2Sm(C=C-R)]_2$	108	272	164	129	84 ^b	96 ^b	17
X = Cl							
$[(cp)_2ScCl]_2$	87	246	159	-	82	98	18
$[(cp')_2ScCl]_2$	87	251	164	131	79	101	19
$[(cp)_2YbCl]_2$	99	258	159	-	82	98	20
[(mecp) ₂ YbCl] ₂	99	258	159	127	82	98	11
$[(cp')_2YbCl]_2$	99	262	163	130	80	100	19
$[(cp)_2 ErCl]_2$	100	259	159	_	82	98	21
$[(cp')_2 PrCl]_2$	112	276	164	130	78	102	19
$[(cp')_2UCl]_2$	115	278	163	131	79	101	22
X = Br							
$[(cp)_2YbBr]_2$	99	255	156	-	85	95	20
$[(cp)_2 ErBr]_2$	100	258	158	-	85	95	23
$[(cp)_2 Dy Br]_2$	103	261	158	-	85	95	23
$[(cp)_2GdBr]_2$	105	263	158	130	85	95	24
$[(cp')_2 UBr]_2$	115	275	160	-	85	95	22

^{*a*} Cp' steht für C₅H₃(Sime₃)₂, R für C(CH₃)₃, mecp für C₅H₄CH₃; ϕ (MC) stellt den Durchschnitt aller M-C(η^5)-Abstände dar. ^{*b*} Siehe Text. ^{*c*} Diese Arbeit.

grösserer Unsicherheit vorhergesagt werden. Andererseits ermöglicht das umfangreiche Datenmaterial für Verbindungen des Typs A wohldefinierte Aussagen bezüglich aller Bindungslängen und -winkel.

Wie aus Tabelle 6 ersichtlich, sind die XMX'- und MXM'-Winkel für jeden Liganden X in sich konsistent und stellen somit einen charakteristischen Wert dar, der für die Strukturvorhersagen genutzt werden kann. Auffällig ist der grosse Unterschied der Werte für sp^3 - und sp-hybridisierten Kohlenstoff, der sich auch in den "effektiven Radien" widerspiegelt. Aus den MX-Abständen der Verbindungen erhält man (s.o.) die "effektiven Radien". Aufgrund der Zahl der Vergleichsverbindungen wollen wir nur für die Liganden X = Cl, Br und CH₃ einen Variationsbereich angeben. Die Werte für X = O, N und C(sp) sollten hingegen nur als erste Anhaltspunkte gewertet werden: Cl 169 ± 4 pm, Br 181 ± 3 pm, CH₃ 156 ± 4 pm; (C=C-R) ~ 144 pm, N ~ 133 pm, und O ~ 126 pm.

Zur Erzeugung eines vollständigen Parametersatzes stehen weitere kristallographische Untersuchungen an Verbindungen des Typs $[Mcp_2X]_2$ mit X = N, O, F aus. Für F-verbrückte $[Mcp_2X]_2$ -Verbindungen erwarten wir folgende Parameter: Winkel FMF' 70 ± 3°, MFM' 110 ± 3°; "effectiver Radius" \mp 120 ± 3 pm.

Schwingungsspektroskopie

Das Schwingungsspektrum von $[Yb(mecp)_2NH_2]_2$ setzt sich aus den Banden des Methylcyclopentadienylanions [9], den Absorptionen der NH₂-Gruppen sowie den Yb₂N₂-Gerüstschwingungen zusammen.

Im Bereich der NH₂-Valenzschwingungen wird nur eine sehr scharfe Bande mittlerer Intensität beobachtet. Eine weitere, schwächere Absorption bei niedrigeren Wellenzahlen, wie sie für $[Ybcp_2NH_2]_2$ [2] beschrieben wird, ist trotz hoher Substanzkonzentration und hoher Auflösung nicht zu erkennen. Die scharfe Bande bei 3320 cm⁻¹ wird daher (mit Vorbehalt) der asymmetrischen und symmetrischen NH₂-Valenzschwingung gemeinsam zugeordnet. Die symmetrische NH₂-Deformation erscheint als intensive Bande in normaler Grössenordnung bei 1550 cm⁻¹; bei 1353 cm⁻¹ liegt die NH₂-wagging-Schwingung und schliesslich kann die $\rho(NH_2)$ der ebenfalls intensiven Absorption bei 690 Wellenzahlen zugeordnet werden.

Für das planare Yb₂N₂-Gerüst werden 3 IR-aktive Schwingungen (zwei mit überwiegendem Valenz- und eine mit Deformationscharakter) unterhalb 500 cm $^{-1}$ erwartet. Zu Vergleichszwecken bieten sich die spektroskopischen Ergebnisse der dimeren Organoindiumamide $[Me_2InNR_2]_2$ (R = Me [25], Et, ¹Pr, SiMe₃ [26]) an, doch führt der im Vergleich zu In und N noch drastischere Massenunterschied zwischen Yb und N zu einer markanten Frequenzverschiebung. Während nämlich die beiden Ringmoden mit Valenzcharakter bei 453 und 395 cm⁻¹ noch den entsprechenden Schwingungen des In_2N_2 -Rings bei 482 und 445 cm⁻¹ [25] vergleichbar sind, ist die verbleibende Yb₂N₂-out-of-plane Deformation nicht mehr mit der In_2N_2 -Ring"Biege"schwingung adäquat. Im ersten Fall ist praktisch keine Beteiligung der Schweratome mehr anzunehmen, so dass nur die Bewegung der N-Atome stattfindet und somit eine vergleichsweise höhere Frequenz erwartet werden darf. Was dieses Zusammenrücken der drei IR-aktiven Ringvibrationen anbelangt, ist z.B. das B₂H₂-Skelett des Diborans (Massenverhältnis ebenfalls etwa 11/1. Absorptionen bei 2612, 1915 und 1606 cm⁻¹ [27]) das günstigere Vergleichsmolekül. Auf Grund dieser Überlegungen ordnen wir die frequenzhöchsten der insgesamt 5 scharfen Banden unterhalb 500 cm⁻¹ (453, 395, 376, 333, 325 cm⁻¹) wie folgt zu:

Die Zuordnung der Absorptionen bei 453 und 395 cm⁻¹ steht im Einklang mit anderen Stickstoffverbindungen der Lanthaniden: so wurde eine Bande mittlerer Intensität im Spektrum von $(cp_3Yb)_2 \cdot Pyrazin [28]$ und die Absorptionen bei 382 ± 1 cm⁻¹ bzw. 370 ± 1 cm⁻¹ in Ln(N(Sime_3)_2)_3 den Ln-N-Valenzschwingungen zugeordnet (Ln = La bis Nd, Sm bis Gd, Ho, Yb, Lu) [29].

Als Indizien für die Kopplung der beiden $Yb(mecp)_2$ -Einheiten aufgrund der sehr stabilen NH_2 -Brücken können die Aufspaltung der Bande bei 330 ± 5 cm⁻¹ (Deformationsschwingung der CH₃-Gruppe gegen den Ring || zur Ebene) und der

IR-Frequenzen von [Yb(mecp)₂NH₂]₂ (Festkörper) IR (Int.)^a Zuordnung, Rasse b $[YbNH_2]_2(D_{2h})$ $mecp(C_{2n})$ 3320 m $v_{as,s}(NH_2)$ 3095 s-m ν (CH,Ring), A₁ 3085 s-m ν (CH,Ring), A₁/B₁ 3070 s-m ν (CH,Ring), B₁ 2960 Sch ν (CH,CH₃), B₂ 2930 m ν (CH,CH₃), A₁/B₁ 2910 Sch 2865 m Oberton 2740 s Oberton 1550 st $\delta_{s}(NH_{2})$ 1494 m v(CC,Ring), A1 1460 s-m,br $\delta_{as}(CH_3), B_1/B_2$ 1390 Sch $\delta_{s}(CH_{3}), A_{1}$ 1378 s-m ν (CC,Ring), B₁ 1353 s-m,br $\omega(\rm NH_2)$ 1240 s) $v(C-CH_3), A_1$ 1235 ss / 1210 ss, br Verunreinigung (DME?) 1065 m δ(CH, ||), A₁ 1045 st $\delta(CH, \parallel), B_1$ 1034 st ν (CC, "Ringpulsation"), A₁ 1015 Sch $\delta(CH, CH_3, \perp), B_2$ 975 ss,br $\delta(C-CH_3, \parallel), B_1$ 936 m $\delta(CH, \parallel), A_1$ 870 ss, br δ (Ring, ||), B₁ 854 Sch δ (Ring, ||), A₁ 845 st) $\rho(CH, \perp)$ 833 sst / 782 sst) $\rho(CH, \perp)$ 765 sst / 690 sst $\rho(NH_2)$ 630 m γ (Ring), A₂ 620 Sch 453 st ν (Yb-N), B_{3µ} 395 st ν (Yb-N), B_{2 μ} 376 st $\delta(\nu)$ (Yb-N), B_{1 μ} 333 m) $\delta(C-CH_3, \parallel), B_1$ 325 m /

^a Angaben in cm⁻¹, es bedeuten: sst = sehr stark, st = stark, m = mittel, s = schwach, ss = sehr schwach, br = breit. ^b || (parallel), und \perp (senkrecht) beziehen sich auf die C₅-Ebene des Cyclopentadienylrings.

 $\rho(CH)_{\perp}$ -Schwingungen bei ca. 770 ± 10 und 840 ± 10 cm⁻¹ angesehen werden. Diese Absorptionsbanden sind jeweils zweifach aufgespalten, mit nur geringfügig unterschiedlicher Intensität der Einzellinien.

Experimenteller Teil

Tabelle 7

Sämtliche Arbeiten wurden mittels Schlenktechnik in einer Atmosphäre von nachgereinigtem Inertgas (N_2 oder Ar) ausgeführt. Die verwendeten Lösungsmittel

wurden über Na/K-Legierung/Benzophenon getrocknet. Ammoniak wurde über Na getrocknet und direkt in das Reaktionsgefäss einkondensiert. Die Umsetzung von metallischem Ytterbium mit frisch gecracktem Methylcyclopentadien liefert, wie früher beschrieben [1], ein gelbolives Rohprodukt. $[Yb(mecp)_2NH_2]_2$ kann mittels Toluolextraktion des Rohproduktes oder fraktionierter Kristallisation aus 1,2-Dimethoxyethan bei 0°C erhalten werden. Die letztgenannte Methode lieferte für die Kristallstrukturanalyse geeignete Kristalle. Schmelzpunkt 242–244°C.

Anal. Gef.: C, 40.30; H, 4.56; N, 3.86; Yb, 49.6. $Yb_2C_{24}H_{32}N_2$ ber.: C, 41.50; H, 4.64; N, 4.03; Yb, 49.82%. ¹H- und ¹³C-NMR-Spektren in C_6D_6 , δ -Angaben in ppm bezogen auf $C_6D_5H \delta = 7,26$; in Klammern sind die Halbwertsbreiten der Signale in Hz angegeben.

¹H-NMR: -51.1 (140) (s, 4H, Ring); -16 (140) (s, 4H, Ring); 22.5 (100) (s, 6H, CH₃); 112.0 (210) (s, 2H, NH₂).

 13 C-NMR: -24.6/-23.0 (250) *; -9.4 (110); 32.2 (60); 37.6 (57) *.

Die Registrierung der IR-Spektren erfolgte im Bereich von 4000–1330 an Hostaflonsuspensionen, von 1330–250 cm⁻¹ an Nujolsuspensionen zwischen CsI-Fenstern mit einem Perkin Elmer Gerät, Modell 283. Ramanspektren konnten nicht erhalten werden. Die ¹H- und ¹³C-NMR-Spektren wurden in C₆D₆ an einem CXP 300 der Fa. Bruker aufgenommen.

Bei der Kristallstrukturanalyse erfolgte die Bestimmung der Gitterkonstanten durch Optimieren der Winkelwerte 2θ , ω , und χ von ausgesuchten Reflexen (siehe Tab. 1) und anschliessender Verfeinerung der Messwerte. Die Messung der Reflexintensitäten erfolgte mit ω -Abtastung über einen Bereich von 2° und einer Abtastgeschwindigkeit, die in Abhängigkeit von der Intensität zwischen 2 und $30^{\circ}/\text{min}$ variierte. Die Umrechnung der Intensitäten in relative Strukturfaktoren ist nach Standardmethoden durchgeführt worden. Die F_0 -Werte waren dabei mit Gewichten versehen, zu deren Berechnung die Standardabweichung aufgrund der statistischen Fehler der Messung diente. Rechnungen zur Absorptionskorrektur wurden nicht durchgeführt. Alle Rechnungen wurden mit dem Programmsystem X-Ray [30] auf der Rechenanlage Cray 2/M-Cyber 174 des Universitätsrechenzentrums Stuttgart durchgeführt. Für die Berechnung der Atomformfaktoren lagen die Werte von Cromer und Mann [31], bei Wasserstoffatomen diejenigen von Stewart und Mitarb. [32] zugrunde.

Dank

Unser Dank gilt Herrn Dr. W. Schwarz für die kristallographischen Messungen, dem Fonds der Chemischen Industrie für die Bereitstellung von Sachmitteln und der Robert-Bosch-Stiftung für die Gewährung eines Stipendiums (A.H.).

Literatur

- 1 A. Hammel, W. Schwarz und J. Weidlein, J. Organomet. Chem., 378 (1989) 347.
- 2 E.O. Fischer und H. Fischer, J. Organomet. Chem., 3 (1965) 181; 6 (1966) 141; H. Fischer Dissertation, Universität München, 1965.
- 3 J. Müller, Chem. Ber., 102 (1969) 152.
- 4 R.G. Hayes und J.L. Thomas, Inorg. Chem., 8 (1969) 2521.

^{*} jeweils 2 Signale, Halbwertsbreite des gesamten Signals.

- 5 International Tables for X-Ray Crystallography, Vol. 1, Kynoch Press, Birmingham, England, 1969.
- 6 C.K. Johnson, Ortep-Report ORNL-3794, Oak Ridge, National Laboratory, Oak Ridge Tennessee, 1965; zur Darstellung der Schwingungsellipsoide mit 50% Wahrscheinlichkeit genutztes Programm.
- 7 W.J. Evans, J.H. Meadows, W.E. Hunter und J.L. Atwood, J. Am. Chem. Soc., 106 (1984) 1291.
- 8 R.D. Shannon, Acta Crystallogr. A, 32 (1976) 751.
- 9 A. Hammel, Dissertation, Universität Stuttgart, 1989.
- 10 W. Lamberts, H. Lueken und U. Elsenhans, Inorg. Chim. Acta, 121 (1986) 81.
- 11 E.C. Baker, L.D. Brown und K.N. Raymond, Inorg. Chem., 14 (1975) 1376.
- 12 P.L. Watson und G.W. Parshall, Acc. Chem. Res., 18 (1985) 51.
- 13 W.J. Evans, R. Dominguez und T.P. Hanusa, Organometallics, 5 (1986) 1291.
- 14 J. Holton, M.F. Lappert, D.G.H. Ballard, R. Pearce, J.L. Atwood und W.E. Hunter, J. Chem. Soc., Chem. Comm., (1976) 480; J. Chem. Soc., Dalton Trans., (1979) 54.
- 15 W.J. Evans, D.K. Drummond, T.P. Hanusa und R.J. Doedens, Organometallics, 6 (1987) 2279.
- 16 J.L. Atwood, W.E. Hunter, A.L. Wayda und W.J. Evans, Inorg. Chem., 20 (1981) 4115.
- 17 W.J. Evans, I. Bloom, W.E. Hunter und J.L. Atwood, Organometallics, 2 (1983) 709.
- 18 J.L. Atwood und K.D. Smith, J. Chem. Soc., Dalton Trans., (1973) 2487.
- 19 M.F. Lappert, A. Singh, J.L. Atwood und W.E. Hunter, J Chem. Soc., Chem. Comm., (1981) 1190.
- 20 H. Lueken, J. Schmitz, W. Lamberts, P. Hannibal und K. Handrick, Inorg. Chim. Acta, 156 (1989) 119.
- 21 W. Lamberts, H. Lueken und B. Hessner, Inorg. Chim. Acta, 134 (1987) 155.
- 22 P.C. Blake, M.F. Lappert, R.G. Taylor, J.L. Atwood, W.E. Hunter und Hongming Zhang, J. Chem. Soc., Chem. Comm., (1986) 1394.
- 23 H. Lueken, W. Lamberts und P. Hannibal, Inorg. Chim. Acta, 132 (1987) 111.
- 24 W. Lamberts, H. Lueken und U. Elsenhans, Inorg. Chim. Acta, 121 (1986) 81.
- 25 K. Mertz, W. Schwarz, B. Eberwein, J. Weidlein, H. Hess und H.D. Hausen, Z. Anorg. Allg. Chem., 429 (1977) 99.
- 26 K.A. Aitchison, J.D.J. Backer-Dirks, D.C. Bradley, M.M. Faktor, D.M. Frigo, M.B. Hursthouse, B. Hussain und R.L. Short, J. Organomet. Chem., 366 (1989) 11.
- 27 J.H. Carpenter, W.J. Jones, R.W, Jotham und L.H. Long, Spectrochim. Acta A, 27 (1971) 1721.
- 28 E.C. Baker und K.N. Raymond, Inorg. Chem., 16 (1977) 2710.
- 29 P.G. Eller, D.C. Bradley, M.B. Hursthouse und D.W. Meek, Coord. Chem. Rev., 24 (1977) 1.
- 30 J.M. Stewart, P.A. Machin, C.W. Dickinson, H.L. Ammon, H. Heck und H. Flack, X-Ray 76, Computer Science Center, Maryland, University of Maryland, 1976.
- 31 D.T. Cromer und J.B. Mann, Acta Crystallogr. A, 24 (1968) 321.
- 32 R.F. Stewart, E.R. Davidson und W.T. Simpson, J. Chem. Phys., 42 (1965) 3175.